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Abstract

This is a study of a random walk on the nonnegative integers
whose steps are controlled as follows. Upon arriving at a location
i, a pair of probabilities (p,q) is selected from a prescribed set,
a reward r(i,p,q) is received, and the next step takes the walk to
locations i+l, i-1 or i, with respective probabilities p, q and 1l-p-q
(when i=0 these probabilities are p, 0O and 1-p). This is repeated
indefinitely. A rule for successively selecting the probabilities
(p,q) is a control policy. We identify conditions on the rewards and
probabilities under which there exist monotonic optimal policies for
discounted and average rewards. For example, in one case it is optimal
to increase the probability of backward steps as the location i in-
creases. Our results are based on (1) a criterion for monotone optimal
policies, (2) a result describing when an upper envelope of concave
functions is concave, and (3) a relation between optimal policies for
the discounted and average reward criteria. Procedures for computing

optimal policies are also presented.
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Optimal Control of Random Walks
by

Richard F. Serfozo, Syracuse University

1. Introduction

We shall study a controlled random walk on the nonnegative integers
that moves as follows. Upon arriving at a location i the following
events occur:
(1) A pair of probabilities (pa’qa) is selected from the set
{(pl,ql), aters (pm,qm)}. Think of the (pa,qa), or the a & {1,2, s., m},
as the action taken. We assume that O g_pa ar qa < 1, and at least one
of these 1is nonzero.
(2) A real-valued reward r(i,a) is received.
(3) The next location of the walk is determined by the transition
probabilities

p(i,a,it+l) = par p(i,a,i-1) = qas pi(iyasis)s = l-pa-qa

when i > 1; and

p(0,a,l) = P and p(0,a,0) = 1--pa when i=0.
That is, the step is of size +1, -1 or 0 with respective probabilities
pa,qa and l—pa-qa (except at location 0). The above series of events

is repeated indefinitely.

A policy f for controlling this random walk (i.e. a rule for selecting

the (pa,qa)) is defined to be a mapping from the nonnegative integers

(the state space) to {1,2, ..., m} (the action space). Under the policy

This research was partially supported by Air Force Office of Scientific
Research Grant AFOSR-74-2627, and NSF Grant ENG 75-13653.




f the action f(i) is taken, 1i.e. (pf(i)’qf(i)) is selected, whenever
the walk is in location i. We shall consider only these so-called
stationary deterministic policies. Nothing would be gained by considering
nonstatonary or randomized policies.

Each policy f, along with a rule for starting the process, deter-

mines a stochastic process {(Xn,an): n > 0}, where Xn is the location

of the walk at time n, and a = f(Xn) is the action taken. The expected
discounted reward over an infinite horizon is

n —_
V(1) = E.(Za r(Xn,an)IXO—i),
n=0
where 0 < a < 1 is a discount factor. The average reward over an infinite
horizon is
<3 n-1
¢(1) = limn =~ E.(E r(xk,ak)|xo=i).
n-ro k=0

A policy f* is called a-discounted optimal if

Vf*(i) = s?p Vf(i) for all i,

and f* is called average optimal if

beu(d) = s?p ¢ (1) for all 1.

The aim is to find such policies. We shall call this decision process
a controlled random walk. It is a special case of a Markov decision
process, or a controlled Markov chain.

Decision processes that arise in practice often have inherent
properties that lead to nicely structured optimal policies. For example,
an optimal policy f(i) may be a monotone, unimodal, or convex function
of 1. Knowing that there is, say, an increasing optimal policy, then
the seerch for an optimal policy may be confined to the class of increasing

policies. An optimal policy might then be obtained by a simple ad hoc
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procedure, such as a calculus argument. This is especially important
for decision processes with infinite state spaces (like ours) where
optimal policies cannot be obtained by the standard procedures for
processes with finite state spaces. Structured policies are also
generally easier to implement than unstructured ones.

In this paper we show, under some very general conditions on the
rewards r(i,a) and the probabilities (pa,qa), that it is (discounted
and average) optimal to "increase" the probability of backward movement
of the process as the location of the walk increases. We present a
similar result where it is optimal to "decrease" this probability.

We show how these results carry over to finite time horizons, and to
walks where the set of possible probabilities for a step depends on
the location where the step is taken. We also present procedures
for calculating some average optimal policies.

Our analysis herein is based on three key results that apply to
more general Markov decision processes. The first result is a criterion
for the existence of a monotone optimal policy (Proposition 4.1).
Related criteria are discussed in [6] and [8]. The second result
describes when the upperenvelope of a family of functions, defined on
the integers, is concave (Proposition 4.2). This result enabled us
to find natural conditions on the rewards r(i,a) that lead to monotone
optimal policies. The third result asserts, under some weak conditions,
that if a Markov decision process has a discounted optimal policy with
a given structure, then it also has an average optimal policy with the
same structure (Theorem 5.1). Part of this result is an extension of

(2, Theorem 1].




Applications of controlled random walks arise in contexts where
the descriptive theory of random walks is used. In a related paper [7],
we apply the results herein to obtain optimal policies for controlling
birth and death processes and queues.

2. Monotone Optimal Policies for Random Walks Based on Discounted Rewards

In this section we identify conditions under which there exist in-
creasing and decreasing discounted optimal policies for the controlled
random walk. (We use the terms increasing and decreasing to mean non-
decreasing and nonincreasing, respectively.) We also discuss the mono-
tonicity of these discounted optimal policies, with respect to the dis-
count factor.

Here, and throughout this paper, we shall use the notation introduced
above. We shall use a prime to denote the difference operator with
respect to i, namely u'(i) = u(i+l)-u(i). In particular, we write

r'(i,a) = r(i+l,a) - r(i,a).

Our first result concerns increasing policies. A typical increasing

policy f can be written as

£(1) = a i s 4 2

where 0 = 11 < 12 L eia s i

m
is in location i, and ia < < 1a+1’ then action a is taken, i.e.

fia

im+1 = o, This means that if the walk

(pa,qa) is selected. Note that the action increases as i increases.

Also, 1if 1a = 1 for a particular action a, then this action is never

a+l
taken.

Theoxem 2.1. Suppose the following conditions hold.

(1) Py >Py> eee 2Py dy <qy <0 <9, and Pt <l

(2) r'(4,1) 0 for all 1.

A

r'(1,2) £ ¢oe S 2'(1,m)

A

3) r'(d,l) > r'(i+1l,m) for all 1.

v




Then there is an increasing a-discounted optimal policy for the random walk.
We shall prove this after we make a few observations. Theorem 2.1
asserts that there is an a-discounted optimal policy which selects higher
actions in {1, ..., m} as the location i of the walk increases. Under
this policy, because of assumption (1), the selected g is an increasing
function of i, and the selected p is a decreasing function of i. Their
ratio p/q is also decreasing in i, since pl/ql Zeie > pm/qm. This
means that the tendency of backward movement of the walk increases as
its location increases. The ratio p/q is like the traffic intensity
of a queueing process. We tried to prove Theorem 2.1 with (1) replaced
by the weaker condition pl/ql e 2 pm/qm, but we were unsuccessful.
We feel that (1) cannot be relaxed this way, but we do not have a
counterexample to justify this conjecture.
Note that assumption (1) poses no restriction on the (p,q)'s in

the following important examples.

A Random Walk with a Controlled Ascent.

The pa's are subscripted so that p; > ... > p_ and 4 = +-0 = Q.

A Random Walk with a Controlled Descent.

|
|
o

The qa's are subscripted so that 4 S waete, K 9, and Py = e
These examples are analogous to an M/M/1 queue with a controlled arrival
rate and a controlled service rate, respectively. In [7] we show that
these controlled queues are actually equivalent to the above random
walks, and we apply the results herein to obtain optimal policigs for
them.

The assumptions (1) - (3) insure that the value function of the
walk (see (5)) is concave. This is a key ingredient for an increasing
policy (see the verification of (8), (9) and (13), and Proposition 4.2).

Note that (2) and (3) hold if and only if




0>r'(0,m)>r"' (0,m-1)>...>r'(0,1)>r"' (1,m)>r"' (1,m-1)>...>r"(1,1)>r' (2,m)>...

This is a very weak restriction on the rewards. It is satisfied, for
example, when

r(i,a) = g(a) - h(1),
where h is convex increasing and g has any structure. Another consequence
of (2) is that the rewards are bounded from above. Namely,

(4) sup r(i,a) < max r(0,a) < =.

i,a a
We shall use the following notation and results in the proof of

Theorem 2.1. We let

@

k
(5) V() = sup V_(i) = sup E.( £ a r(X ,a )|X =1),
e pilier S menlione Gl
n-1 K |
V(1) =sup E.(Zar(X,a)|X=1) for n > 1,
n £ f k=0 Xk A’ 1%

and Vo(i) = 0. These are the infinite and finite horizon value functiomns
of the random walk. Since the rewards r(i,a) are bounded from above,

it follows that the V are finite-valued and

=}

o L Ve(d) 2 ¥} < = for all i and f.

From the theory of Markov decision processes (or dynamic programming)
with upper bounded rewards, we know that the following statements hold.
These come from the basic work of Bellman, Blackwell, Derman, Howard,
Strauch and others, which are nicely unified and extended in [4] and
[5].
(1) (Existence of Stationary Optimal Policies) An a-discounted optimal
policy exists.
(11) (Optimality Criterion) A policy f is a~-discounted optimal if and
only if

U(1,£(1)) = max U(i,a) for all i,
a

-



where

U(i,a) = r(i,a) + a & p(i,a,i)V(]).
i

(iii) (Optimality Equations) The Vn and V satisfy the optimality equations

Vn(i) = max{r(i,a) + uZp(i,a,j)Vn_l(j)} (n >1), and
: 3
V(i) = max{r(i,a) + oZp(i,a,j)V(j)} for all 1.
a |
(iv) (Value Iteration) For all i, V(i) = lim Vp(i).
nre

Our last preliminary for the proof of Theorem 2.1 is the following.
Lemma 2.2. If (1) - (3) hold, then V (i) is concave decreasing in i
AN NAA— n
for each n > 0.

Proof. We shall prove this by induction. Trivially, Vo = 0 is concave
decreasing. Assume that Vn is concave decreasing. The Optimality
Equations (iii) can be written

Vn+l(i) = mzx Un(l,a)

where

(6) Un(i’a) = r(f,a) t o ¥ P(i,a)j)vn(j)-
h|

To prove that \In+l is decreasing, it suffices, since Vn+ is the upper

1
envelope of the functions Un(',l), ¥ Bl Un(-,m), to show
(7) Un'(i,a) <0 for all a and i.

And to prove that Vn is concave, it suffices, by Proposition 4.2 (in

+1

Section 4), to show

(8) U_'(i,1) < U "(1,2) < .or < U_'(i,m) for all i, and
9) Un'(i,l) > Un'(i+l,m) for all i.

Writing (6) in terms of the F, and a, ve get

Un(i,a) = r(0,a) + a[(l—pa)Vn(O) + pavn(l)] for 1 =0
r(i,a) +afq,V (i-1) + (1-p_-q )V (1) + PV, (1+1)]

for 1 > 1.




Then for any 1 > 1,

8%

L}

(10) U '(1,a) = r'(i,a) +alqV "(i-1) + (1-p=q )V '(1) + p V' (i+1)]
=r'(i,a) + u[Vn'(i) - ann"(i-l) + paVn"(i)].

Under our induction hypothesis, the Vn'(i) and Vn"(i) = Vn'(1+1) - Vn'(i)
are nonnegative. Then from the first and second lines in (10), and the
assumptions (1) and (2), it follows that (7) and (8) are satisfied for
i > 1. The inequality (9) is also satisfied for i > 1, since by (1)
and (3),
(11) Un'(i+1,m) - Un'(i,l) = r'(i+l,m) - r'(i,1)

+ a[qlvn"(i—l) + (l-pl—qm)Vn"(;) + pmVn"(i+1)] < 0.
By similar arguments it follows that (7) - (9) are alsov satisfied for

i = 0. We have thus proved that Vn+ is concave decreasing, and this

1
completes our induction argument.
We are now ready to prove Theorem 2.1 which asserts that (1) - (3)

imply the existence of an increasing a-discounted optimal policy.

Proof of Theorem 2.1. Consider the policy

(12) f(i) = max{a: U(i,a) = max U(i,d)},
a
where

U(i,a) = r(i,a) + a £ p(i,a,j)V(]).
]

By the Optimality Criterion (ii), this f is a-discounted optimal. To
complete the proof, we need only show that f is increasing. To do
this it suffices, by Proposition 4.1, to show
(13} v'(4,1) £ 9°¢1,2) £ ... 2 U (L,m) for all {i.
To this end, note that
U(1,a) =| r(0,a) + a[(1-p_)V(0) + paV(l)J for i = 0
r(i,a) + olq V(i-1) + (1-p,~q)V(1) + p V(i+l)] for 1 2 1.

Then




(14) U'(1,a) -—{ r'(0,a) + a[V'(0) - q_V'(0) + p_V"(0)] for 1 = 0
r"(i,a) + a[V' (1) - an"(i—l) + paV"(i)] for i > 1.

By Lemma 2.2 and the Value Iteration Proﬁerty (iv), it follows that V

is concave. Then using (1), (2), V'(0) < 0, and V"(i) < 0 in (14),

we obtain (13). This completes the proof.

We have just shown when it is optimal to increase the probability
of backward movement of the random walk as its location increases.
This tends to keep the walk near zero. Our next result describes the
opposite situation in which it is optimal to decrease the probability
of backward movement as the location increases. This tends to push
the walk toward +«, accelerating its forward movement as it approaches
4o, Similar results appear in [6].

Theorem 2.3. Suppose the following hold.
D i T i

(15) By 2P, 8 s 20 and G Sy &sev Q0

(16) ' (1,1) 2 £°(8,2) 2 ... 22"(d,m) > O for all i,
(17) r(i,a) is convex increasing in i for each a.

(18) max r(i,a) < g(i), where g is a polynomial function in i.
a

Then there is a decreasing o-discounted optimal policy for the random walk.

Note that this result does not require, as Theorom 2.1 does, that
Py + - 1. The assumptions (16) - (18) are satisfied if r(i,a) =

gl(a) + gz(i), where g3(i) is a convex increasing polynomial in i.

Proof. A sufficient condition for the above dynamic programming statements

(i) - (iv) to hold, and the V_ and V to exist, is that

f
: k - -
(19) 1im sup Ef( E a |r(Xk,ak)||X0 = {) 0 for all 1.
nto f k=n




See [5]. 1If the g in (18) is of the form g(i) = iN, then using the
fact that Pf(xk < k]xo = 0) = 1, we have
-] k (-] ]
E(ZIa lr(Xk,a H[X =0) < L akkN < o,
f k10 =
k=n k=n

Similar bounds for this expected value can be obtained for any poly-
nomial g and any value of XO. These bounds are sufficient for (19) to
hold.

Proceeding as in the proof of Theorem 2.1, we consider the policy

f(1) = max{a: vu(i,a) = max Uu(i,a)}.
a

This is a-discounted optimal by the Optimality Criterion. By an induction

argument, as in the proof of Lemma 2.2, it follows that each n-period

value function Vn(i) is convex increasing in i. Here the Vn is convex increasing’
since it is the upper envelope of Un_l(',l), o Un_l(-,m), which are clearly
convex increasing. Then V(i) = lim Vn(i) is convex increasing. Finally arguing

n»>o«

as in the proof of Theorem 2.1, it follows that f is decreasing.

Our final result in this section concerns the monotonicity of
a-discounted optimal policies, with respect to the discount factor a.
This is of interest by itself. It is also a key result for obtaining
average optimal policies from discount optimal policies, which we do
in Section 6.

We shall assume here that we are dealing with a Mérkov decision
process with transition probabilities p(i,a,j), and rewards r(i,a),
which are bounded from above. We let

(20) fa(i) = max{a: lh(i,a) = m;x lL(i,a)},

where

10




UJ(i,a) = r(i,a) + o L p(i,a,j)V(i).
]

According to the Optimality Criterion, the fu is an a-discounted optimal
policy.

Theorem 2.4. 1f f (i) is increasing in i for each a, and
Py o

r(i,1) > r(i,2) > ... > r(i,m), for some i

then f“(L) < ff(i) for this 1 and all 0 < o < B < 1.

Proof. Let b = fu(i). For any a < g it follows by the definition of

fOl and the hypothesis that

0 < U(x(i;b) - U(x(i’a) = !‘(i,b) X r(i,a) + o 2'[p(l)b’.]) - p(lsavj)]v(J)
J

< & x[P(i,b,j) i p(i’aa])]v(])'
3

Using this inequality we have
Us(i,b) - Uﬁ(i,a) > U“(i,b) - Uu(i,a) > 0 for a < B.
From this, and the assumption that fﬁ(i) is increasing, we get

fB(i) 2b = fu(i) for a < f. This completes the proof.

Example 2.5. Consider the controlled random walk with rewards
AN

r(i,a) = g(a) - h(i), where h(+) is convex and increasing, and g(-)
is decreasing. By Theorem 2.1 there is an increasing a-discounted
optimal policy fq, as defined by (20). Then by Theorem 2.4 we have

fu(i) < fF(i) for all a« < B and i.

3. !222£93?.21§€92§fnQPE£W§1\P°}£Ei¢§ for Random Walks with State
Dgpgnggnt Trénsipiops

We have been discussing a random walk in which each step size is deter-
mined by a pair of probabilities selected from the set {(pl'ql)’ vsioy (pm,qm)},

where this set is independent of the location of the walk. We now consider

il



the case where this set of probabilities is dependent on the location
of the walk. We present analogs of Theorems 2.1 and 2.3.

We shall assume (only in this section) that the random walk
moves as follows. Upon arriving at location i, the following events
occur:

(1) A pair of probabilities (p(i,a), q(i,a)) is selected from the set
{(p(4,1), q(i,1)), ..., (p(i,m),q(i,m))}.

(2) A reward r(i,a) is received.

(3) The next location of the walk is determined by the transition

probabilities

p(i,a,i+l) = p(i,a), p(i,a,i-1) = q(i,a), p(i,a,i) =1 - p(i,a) - q(4,a),

when 1 > 1, and

p(0,a,1) = p(0,a) and p(0,a,0) = 1 - p(0,a) when i = 0.
The above series of events are repeated indefinitely.

In the following, we let

d(i,a) = q(i,a) - p(i,a).

!h59525.3.1. Suppose the following conditions hold.
() p,1) >2...>p@{,m), q(d,1) < ... < q(i,m) and p(4,1) + q(i,m) < 1
for all {.
() d'(4,1) < ... <d'(4,m) < 0 and d'(1,1) > d'(i+l,m) for all i.

(6) r'(4,1)

[IA
A

RN r'(i,m) <0 for all i.
(7) r'(4,1) > r'(i+1l,m) for all {i.
Then there is an increasing a-discounted optimal policy for the random
walk.
This is similar to Theorem 2.1, except for the additional condition

(5). It can be proved just as we proved Theorem 2.1. The key steps

12




are to observe the following analogs of (10) and (11) in Section 2:

Un'(i,a) =r'(i,a) + u{(l-d'(i,a))vn'(i) - q(i,a)Vn"(i-l) + p(i,a)Vn"(i+l)},

and

Un'(i+1,m) - Un'(i,l) = r'(i+l,m) - r'(i,1) + a{q(i,l)Vn"(i—l)

+ [1 - p(i+l,1) - q(i+l,m) - d'(i+l,m)]Vn"(i)
+ [d'(i,1) - d'(i+l,m)]V' (i) + p(i+2,m)Vn"(i+l)} <0
The analog of Theorem 2.3 is as follows.
Ihgg{gg_3.2. Suppose the following conditions hold.
(8) p(i,1) > ... > p(i,m) and q(i,1) < ... < q(i,m) for all i;
(9), d'(i,1) < ... < d"@,m)  For all .
(10) d(i,a) is concave decreasing in i for each a.
QL @) = v 2 et dm) for all i
(12) r(i,a) is convex in i for each a

(13) max|r(i,a)| < g(i), where g is a polynomial in i.
a

Then there is a decreasing a-discounted optimal policy for the random

walk.

4. 9EEESEEEvEEF\§92959“e"OPFiTal‘P?*?Cie§ gnd_ngggve Value Functions
In this section we present two key results which we used above

for establishing the existence of monotone optimal policies for our

random walk.

We shall consider the general optimization problem

v(i) = max u(i,a) for 4 = Qylyas.
a

where a ¢ {1, ..., m} and u is a real-valued function. An optimal
policy for this problem is defined to be any mapping ¢ from {0,1,...} to

{1,2,...,m} which satisfies

13




u(1,f(1)) = max u(i,a) for all i.
Note that this is an ab:traction of the Optimality Criterion in dynamic
programming (recall statement (ii) in Section 2).
Our first result describes sufficient conditions for the existence

of monotone policies. Variations of this,along with other applications,

are discussed in [6] and [8].

252295§§1Q2,4°1° Let f be the optimal policy defined by

f(1) = max{a: u(i,a) = max u(i,3)}.
a

The optimal policy f is increasing if
1) w'(1,1) <u"(1,2) £ «s« S u'(E,m) For all 1.
The optimal policy f is decreasing if
(2) u'(4,1) 2u'(4,2) 2 ... 2 u'(d,m) for all {.
Proof. Suppose (1) holds, and there is an i such that f(i+l) < £(1).
By the definition of f(i) and (1), we have
0 <u(i,f(1)) - u(d,f(i+l)) < u(d+1,£(i)) - u(i+l,f(i41)),
and so u(i+1,f(i+1)) < u(i+l,f(i)). But this contradicts the definition

of f(i+l). Thus f must be increasing. The assertion that (2) implies

that f is decreasing is proved similarly.

In order to apply Proposition 4.1 when u(i,a) is a function of v
(as we did in Section 2), some knowledge of the structure of the value
function v may be required. Since v is the upper envelope of u(+,1),
., u(*,m), then v is obviously convex, increasing or decreasing when
all of the u(+,a)'s are convex, increasing or decreasing, respectively.
The next result describes conditions under which v is concave.
Erpposition 4.2. The function v is concave if either of the following

conditions hold.

14
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(3 uw'€1:1) v (1,2) £ «os £ 0'(1,m) and v'(1,1) 2 v'(i4l,m)  for all 1.

(4) u'(d,1) >u'(i,2) > ... > u'(i,m) and u'(i,m)> u'(i+l,1) for all i.

Proof. Suppose (3) holds and let f be the optimal policy in Proposition

4.1. Using (3) and the increasing property of f we have
v'(1) = u(d+1,f(i+1)) - u(i,f(1)) > u(i+l,f(1)) - u(d,f (1))
> u'(4,1) > u'(i+l,m) > u(i+2,f(i+2)) - u(i+l,f(i+2)) > v'(i+l).
Thus v is concave. A similar argument shows that v is concave if (4) holds.
5. Discounted and Average Reward Optimal Policies of Similar Structure
If a Markov decision process has a discounted optimal policy with a
special structure, then it seems reasonable that there should be an
average optimal policy with the same structure. We shall show that
this is true in a fairly general setting. In the next section we
apply this to our random walk.
We shall consider a Markov decision process with rewards r(i,a),
and transition probabilities p(i,a,j) for i,j > 0 and a in some set.
We let T denote the set of all policies f under which the a-discounted
reward function Vf(i) is finite-valued for all 0 < a < 1, and the
limit
= n-1
¢¢(1) = limn = E.( I r(Xk,ak)lxo = 1)
n-+e k=0
exists for all i, where -« < ¢f(1) < o,
Ibgg;ggnj.l. Suppose the Markov decision process described above has
upper bounded rewards, and there is a set of policies I' = {fl'fZ’ Rt
in I such that fn is an"discounted optimal, where a is a sequence with

a -+ 1. Then
n

(1) sup ¢f(i) = sup ¢.(1) for all i.
fel fel

15




I1f, in addition, T is a finite set, then there is a policy f* € I' such
that

(2) ¢.,(1) = sup ¢.(1) for all {i.
fell

The second part of this result is a slight extension of [2, Theorem 1].
The first part is new. The usefulness of Theorem 5.1 is illustrated in
the next result which follows immediately.
Corollary 5.2. If the Markov decision process in Theorem 5.1 has an
increasing a-discounted optimal policy for each o, the set of such
policies is finite, and Vf(i) = -» for all policies f ¢ I, then there
exists an increasing average optimal policy.

Proof of Theorem 5.1. Suppose for now that the rewards r(i,a) are all

nonpositive. We first note that for any f ¢ I,

(3) ¢f(1) = lim (1—&)Vf(i) for all 1i.
o>l

This follows by the well-known Abelian Theorem [3,p.445], when ¢f(i)

is finite. And it follows when ¢f(i) = -o, since

\Y

(8
e ° 8
(4) @A~V () < (1-a)Ef(kioa r(xk,ak)lx0 = 1)
v
-1 * k
SV B Lo t(X,a.)[X = 1) > ¢,(1) = -= as a > 1,

where Yo is the integer part of (l-u)-l.
Using (3) and the assumption that fn is an—discOunted optimal, we
have

sup ¢f(i) = gup lim (1-a )Vf(i) < lim (1-an)Vf (1)
fell fell nre P n>® n

fia

sup lim (l—an)Vf(i) = sup ¢f(1)-
fel' N fel
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Furthermore, the first term in the above is always greater than or
equal to this last term, and so they are equal. This proves (1).
Now assume that T' is finite. Then there is an f* ¢ T which is

a_  =discounted optimal for k = 1, 2, ... where a is some subsequence

of an. Using Theorem 1 in [9,p.181] (for our nonpositive rewards!)
and (3), it follows for any f ¢ Il that

#6001 £ 1in (Q-siVC) S L (oo, Wy (0 = 408

This proves (2).

We now prove (1) and (2) for upper bounded rewards. Let c be an
upper bound for the r(i,a)'s, and consider the Markov decision process
with rewards ¥(i,a) = r(i,a) - c, transition probabilities p(i,a,j),
and average rewards $f. This process has the same set of a-discounted

optimal policies as the original process, its rewards are nonpositive,

and $f = ¢ -

£ C Thus, by the above

sup ¢f(i) = sup(¢f(i) +c) = sup($f(i) + c) = sup ¢f(i).
fell fell fel fer

Now suppose I' is finite and f* ¢ I' is as defined in the preceeding
paragraph. Then

bea(1) = 0., (1) + c = sup 0e(1) + c = sup ¢.(1) for all 1.
fell fell

This completes the proof.

6. Monotone Optimal Policies for Random Walks Based on Average Rewards
Theorem 2.1 describes conditions under which there exists an

increasing a-discounted optimal policy for the random walk. In this

section, we show that these condition, with some minor additionms,
are also sufficient for the existence of an increasing average optimal

policy. A similar result holds for decreasing average optimal policies

17
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(based on Theorem 2.3), but for the sake of brevity, we shall not
discuss it.
We shall consider the random walk as described in Sections 1 and

2. In our first result, we use the following conditions.
(1) Py 2 ece 2Pp» 4 £ +00 £ 45 and p; +q < 1.
(2) Py > 0, q, > 0 and pm/qm < i,

3) r'(4,1) <... <r'(i,m) <0 for all i, and at least one of the
r'(i,a) is nonzero.
) r'(4,1) > r'(i+l,m) for all i.

Under these assumptions the average reward

n-1

F =1 & .
¢ (1) = ii: n B :Or(xk,ak)}xo = 1)

k
exists for any policy f and -« 5»¢f(i) < » (see Proposition 6.2).
Moreover, ¢f(1) is independent of i, so we shall simply denote it by

¢f. We let I denote the set of increasing a-discounted optimal policies
for 0 < a < 1. Such policies exist under (1) - (4), by Theorem 2.1.
IHSQEEE.§'1° Suppose the random walk satisfies (1) - (4). Then

sup ¢. = sup ¢..
f 8 fel £

If, in addition, there is an N such that
r(4,1) > r(4,2) > ... > r(i,m) for all i > N,
then there is an increasing policy in I that is average optimal for
the random walk.
The first assertion says that the increasing policies in I yield
the largest average reward, but it doesn't say that one of the policies
in I actually attains the maximum reward. The second assertion does.

The assumptions (1) - (4) are essentially assumptions (1) - (3) in

18




Theorem 2.1 with a few minor additions. These additions simply eliminate
some degenerate cases. Specifically, we assume that at least one of

the r'(i,a) is nonzero to rule out the case where the rewards do not

depend on i. With this case ruled out, (3) and (4) imply that r(i,a) ¥ -«
as i » » for all a. We assume q; > 0 for the sake of brevity. The

analysis presented here also carries over to the case when some of

the qa's are zero, but more details are involved. The Py 250, An
conjunction with 9, > 0, just eliminates the case in which P i s 0,
and each policy determines a walk that is absorbed at zero. Even though

p. > 0, some of the other pa's may be zero. The pm/qm < 1, eliminates

1

the case in which each policy f determines a walk whose states are all

transient or null recurrent, and whose average reward ¢f = -= (see
Proposition 6.2). 2re any policy is average optimal.
Proof. If ¢f = —» for all f, then the assertions are trivally satisfied.

Now suppose there is an fo with ¢f # -». It follows that its
o

a-discounted reward Vf (i) > =» for all i and «. Consequently, for
o

each f ¢ I we have Vf(i) > Vf (i) » -» for all i. 1In addition, T
0

for each f ¢ I. For if not, then arguing as in (4) in Section 5, we

would have Vf(i) = -w, Let Il be the set of policies f for which ¢f > =,

Then from Proposition 6.2, Theorem 2.1, and Theorem 5.1,it follows that

sup ¢f = sup ¢f = sup ®f.
£ fell fel

We now establish the existence of an increasing average optimal
policy. Let a denote the largest action taken by any policy in I. Let

f be a policy in I that takes the action 5, and let @ be a discount
o

factor such that f is uo—discounted optimal. Let I' be the set of

increasing a-discounted policies f“, as constructed in the proof of

1Y




Theorem 2.1, for all @ < a < 1. Then Theorem 2.4 yields
£.() = a for all 1 > min{j > N: f(j) = a} and a > @ .

Consequently, I' is a finite set. Thus from Theorem 5.1 it follows
that there is an increasing policy in I that is average optimal for the
random walk.

In the next result we present an expression for the average
reward function ¢f of our random walk. We used this in the above proof
and we shall use it again in the next section.
Proposition 6.2. Suppose the random walk satisfies (1), (2) and
r(i,a) + -» as 1 » » for all a. Let f be a policy, and let

=1

¥, = LD /q
1 g ECR)' £ (M)

for ds=0l,

and

N == >0 foxr all i

1 Pe)
min{i > O: Peeg) = 0} otherwise.

Case 1. The random walk under f is such that {0,1,...,N} is a closed

class of positive recurrent states and {N+l1,N+2,...} are transient

states if and only if Zyi < ©, (When N = « the latter set is null.)
i

In this case, the limiting distribution of the walk is

nf(i) 5 if i3> 1
W e,
1

Gl

W~ 8

i

= 0 for 1 > N), and

N
¢f(1) = r(O,f(O))nf(O) + I r(k,f(k))yk for all {.
k=1

(if N < =@ , then nf(i) g

Case 2. The random walk under f has all transient or null recurrent

20




states if and only if U P ©, In this case ¢f(i) = -» for all 1.
i=1

Proof. The assertions concerning the classification of states follow

by standard arguments for Markov chains. For the case in which Xyi < o

i
we have
® N
¢.(1) = ¥ r(k,f(k))m (k) = r(0,£(0))n_(0) + I r(k,f(k))y,-
f f £ 4 k
k=0 k=1
See [l,Corollary 6.2.23.] In this reference the assumption that r(k,f(k))

is bounded can be relaxed: one only needs that the above sum exists
(+ » being possible values). In our context, -= < ¢f(i) < w,
It remains to prove the last assertion. To this end, assume that

Zyi = o, Let vi(n) denote the number of visits that the random walk,
i

under f, makes to state i in n steps. The r(i,a) is decreasing in i,

and so for each j > 1,

A e B T e e
n I = ,a =n Zv,(n)r(i,f(1)) + n Lv,(n)r(di,f(1))
k=0 e 1=0 * f=g *
- 3t -1
< r(0,f(0))n L vy e (GeE())n L v,(n)
. 50 o A
=0 i=j
~] i-1
=r(j,f(j)) + n L v (n)[r(0,£(0)) - 1].
i=0

Since each i is transient or null recurrent, then n-lvi(n) + 0 a.s,
It follows that
o il n-1
Lim n "Ec( L r(X,a) (X = 1) < r(,£(9)
n> k=0
Letting j > « yields ¢f(i) = -» for all i.
7. Computation of Optimal Average Reward Policies: The Two Action Case
PPN s NN A N\ o ™ Nt SN NN TN NN e, N TN NI NN it

We shall show how to compute an increasing average optimal policy

for a random walk with two control action (pl,ql) and (pz.qz)- We
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discuss the multi-action case in the next section.

In addition to the notation in Sections 1,2 and 6, we let o= pa/qa

and let

n

i
[°1

D = -(pl = 02)(1

3 i
-~ oz) )} r(i,l)n1 of; ol[r(n,l) - ri(n,2)]

i=0
n-1 n-1 0

i=0 i=0 i=n

For each n(0 < n < =), we define the policy

£ (1) =§ 1
2

1f 0 21 <n

£ 122

1]

Note that fm(i) = 1 and fo(i) = 2. We also let

n* ={m if D >0 for alln >0

min{n > O: D < 0} otherwise.

Theorem 7.1. Suppose the random walk with two actions satisfies the
AN

following conditions.

(1) 0 < 9 f-qz’ P1 > Pos Py < 1, and Py + G5 1

(2) '(1,1) =2r'(1,2) 2 0

(3) '3 = 2" (1rl;2)
(4) L r(i,2)02i > -w,
i=0

for all i, and r'(i,a) # 0 for some a and 1i.

for all i.

Then the policy fn* is average optimal.

This says that it is average optimal to select (pl,ql) when the

walk is below n* and to select (pz,qz) otherwise. The n* can be obtained

when r(i,2) is tractable, say a polynomial in i, by successively computing

Dl’D2"" until a Dn is reached such that Dn < 0. Then n* = n. The case

when r(i,a) = g(a) - hi is discussed below. In the proof of Theorem 7.1

we show that Dn is decreasing in n. This can be used in an obvious

22
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way to shorten the procedure for obtaining the n*.

Theorem 7.1 is essentially a special case of Theorem 6.1. We
added assumption (4) here, because without it, any increasing policy
is average optimal. This follows from Theorem 6.1 and the fact that
the average reward for each increasing policy is -», as seen from (8)
and (9) below.

Proof of Theorem 7.1. Let ¢n denote the average reward of the walk

under the policy fn(O <n < «), From Theorem 6.1 it follows that

sup $f = Sup ¢n.
f n

Then in order to prove that the policy fn is average optimal it suffices

*

to show

(6) ¢

= sup ¢n.
n

n*

To this end, we first note that by Proposition 6.2, the limiting

distribution ﬂn(-) of the walk under policy fn is as follows:
ﬂm(i) = (l—pl)pll for 4 >0,

and for n > O,

n (i) = Nn(O)pli for 0 < i <n
n=1  i-mtl
nn(O)pl 0y Hor 1 2 ny
where
-1 =]
g 3 k n-1 G il
Wn(O) = [ kiopl + e £2(l 02) J .
-1
(Here L = 0.) Another application of Proposition 6.2, using the above
k=0
ﬂn's, yields
23




oo

1
(7 ¢, = (1-p,) I r(i,)p
X 140 1

and for n > O,
. Bk i n-1
= (
@) o m,(0); L r(i,)p," + 0y

i"n+l {
1=0 i ¢

)i r(i,Z)p2
=n

Note that

9) ™ lim ¢n.

nore

We now show that ¢n has a global maximum. Using (8) we have

n-1 i
) I r(i,l)p1
i=0

=1

(10) ¢ = ¢n 7t “n(o)“rﬁl(o){("n(o)_1 = "n+1(0)

n+l
+ 0" (7@, - r@,2)

o0

n-1 AL =1 i-n
+ 0, " ™ (O = ppm (07T I x(d,20p, Th

i=n
From the above expression for nn(O), we obtain
=1 = 74 -
"n(o) = ﬂn+1(0) g pl (pz pl)/(l 02))
and
n-1
-1 3 s k
olﬂn(O) = 92"n+1(0) = (pq oz)kiool .

Using these in (10) yields
(11) -6 =p."Ln 0)n_,. (0D
¢n+l ¢n °1 n n+l n’
where Dn is defined above. In light of this factorization, the ¢n

will have a global maximum if Dn is decreasing in n. From the definition

of Dn and some algebraic manipulations we can write
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11

e =1 -1 o sl -
(12) Dn+l - Dn = pl[nn(O) nn+](0) Jr(n,1) + “l”n+1(0) ir(nt+l,1) r(n+l,2)]
=i Bk k n
- plﬂn(O) [r(n,1) - r(n,2)] + (;l —02)[kiowl 1 - ”2) + 0 ]
2 i-n-1 =3 ~1
z r(i,Z)wz = [ﬂl“n(o) = w2"n+1(0) Jr(n,2)
i=n+l1

3 nn+l(0)_l{plr'(n,l) - 1,r'(n,2)

o , i-n-1
(p,=p) [(1-p,) T r(l,l){zl 0~ r(n+1,2)]}.
i=n+l
Under our assumption (2), we have r'(n,1) < r'(n,2). And for i > n + 1,

r(i,2) s r(otl,2) + (E~n-1)r'(utl,2),

so that

5 r(i,2)w21_
i=n+1

Tl

r(n+l,2)(1 - p k ek pz(l = pz)_zr'(n+l,2).

2)

Using these expressions in (12) yields

Do =T £ h 0

-1
- p : y -0 .
ntl ~ n & 'ntl Pl (1, 2)Q = py) " 20

1
This says that Dn is decreasing, and so from (11) we know that on has
a global maximum.

Suppose that Dn > 0 for all n. Then Qn is increasing, and recall
that n* = », Thus from (9) we get

= ¢ * 8u b .
¢ % b P oy
n

Now suppose Dn < 0 for some n. Here the &n increases until n reaches
n* = min{n: Dn < 0}, and then it decreases to ¢_, because of (9).

Consequently, ¢n* = sup ¢ . Since these two cases cover all possibilities,
‘n
n

if follows that the policy fn* is average optimal.




We now consider a special case of the preceding result.
ggsgllarx 7.2. Suppose the random walk with two actions satisfies
the following conditions.

(13) 0 <q; <9y, Py > Py, Py <1land p) +gq, < 1.

(14) r(i,a) = g(a) - hi, where g(1) > g(2) and h > O.

Then an average optimal policy is to select (pl,ql) when the walk is
below n*, and select (pz,qz) otherwise. The n* is the smallest non-

negative integer n for which B 0, where

Dn =‘¥ n + cp
} 2

1

n” +n(l + 02)/(1 - 02) - 2p,(g(1) - g(2))/(h(p1 - py)) if By *

and ¢ = (ol - pz)/((l - pl)(l - pz)). Furthermore,

(16) n* <{0,(8(1) - 8(2)/(h(o, = p)A = o)) 1f o, 41

1/2

L[202(8(1) = g(2))/(h(pl - 92))] if o) = 1.

Proof. By Theorem 7.1 it follows that an average optimal policy is to

select (pl,ql) when the walk is below n* and select (pz,qz) otherwise.

Here
n* = ( o if Dn >0 for all n
? min{n: Dn < 0} otherwise,
where
-1 n-1 i
B -(p1 = py))@ =py) "[e()z - h X ip 7]
i=0
+p.(8(1) - g(Mop. "t -0t +2]
1 2"1 & n
-1 4 i-n
- - - i
+z (o) -0px)[8(2)A -p,) % b
and z_ = n;lp 3
n 1=0 1
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We shall now show that n* = min{n: D 2 0}. Using the identities

O T s SRR ST L STURSID . . R IR e RO
2 2 2 2 2 2 2
i=n i=n i=n
and
n=l i n n
z iol = [1 - P n(l-ol)p1 ]/(l-pl) if o) #1
i=0
= n(n-1)/2 if e 3 %
in the above expression for Dn, yields
-1 alf L g -1
B, = py(8(1) - 8(2))(1-p,) = + h(ol-oz)(l-oz) [iioiol = znpz(l-oz) + n]
= -h(p,-p,) (1-p) " L(1-0.) 71D i p, ¥ 1
) I 1 2 n 1
) _

Note that Dn is strictly increasing and eventually becomes positive.

Consequently,

n* = min{n: D < 0} = min{n: D_ > O}.
n n
The n* is bounded as indicated in (16). This follows since Dn is strictly
increasing, and clearly Dn > 0 when n equal or exceeds the right size of (16).

8. A Linear Program for Computing Average Optimal Policies
- A AN NN~ . ~ -~ N — -~ ~

AN~

s

The random walk we have been studying has an infinite state space.
Therefore, we cannot compute optimal policies for it by the standard
linear programming or policy improvement procedures for finite state
processes. When the rewards r(i,a) are nice functions of i (like
polynomials), then the average reward of for a monotone policy f is
tractable (recall Proposition 6.2), and optimal policies might be
obtainable via policy improvement. It is sometimes feasible to com-
pute monotone optimal policies directly from the function ¢f, for a

small number of actions. We actually did this for two actions in
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the last section. In this section, we discuss another approach for
computing monotone average optimal policies. This is similar to the
linear programming approach for finite state processes.

We shall consider a random walk (such as in Theorem 6.1) which
has an increasing average optimal policy f. We assume the following:

Boundedness Assumption. There is an N such that f(i) = m for all 1 > N

(i.e. it 1is average optimal to select (pm,qm) when the walk is in
locations 1 > N).

We will discuss this below. We also assume, for simplicity, that
pa > 0 and 4, 7 1/2 for all a. This insures that each policy determines
a positive recurrent random walk.

We let m = {n(i,a): 1 >1, 1 <a <m, n(i,m) =1 for 1 > N}
denote a randomized policy; the w(i,a) is the probability of selecting
action a when the walk is at location i, and action m is selected for
all 1 > N. Under the policy w, the Markov chains {(Xn,an)} and {Xn}

are positive recurrent. Letting

v(i,a) = lim P"(Xn =i, a =a Xo = 3j),

n>e

the average reward is

© m
M ¢, = L Iv(d,a)r,a).
i=0 a=1

We can write
m
(2) v(i,a) = v(i)n(i,a) and v(i) = I v(i,a)
a=1l
where

v(1) = Mm P (X =1 | x = 3).
n+e o

Since n(1,m) = 1 for 1 > N, then by Proposition 6.2 it follows that
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3) v(d) = \)(N)(pm/qm)i-N for i > N.

Consequently, expression (1) simplifies to

N-1 m . m
o" ' E L v(i,a)r(i,a) + c(N) Z v(N,a)
i=0 a=1 a=1

where
o

() c) = I r@wk,u)p /q)k
m 'm
k=0
The problem of maximizing the ¢" over m is clearly equivalent to

the following linear programming problem:

N-1 m m
max b L v(i,a)r(i,a) + c(N) I v(N,a)
v(i,a) i=0 a=1 a=1
subject to
m m
L v(0,a) = I [v(O.a)(l*qa) + v(l,a)q,]
a=1 a=1l
m m
z V(j ,Mm) = L [V(j"lya)pa ar V(jya) (1'Pa‘qa) + \)(j"'l:a)qq]

a=1 a=1

for 1 < j < N-1,

m m
aElv(N.m) = aEllv(N-l,a)pa + v(N,a) (1-p_-q,) + v(N,a)(p_/q )q,]
N-1 m M

I Iv(d,a)+ @1 -p/q) Z v(N,a) =1
1=0 a=1 S |
0 < v(0,a) < ... < v(N,a) <1 for 1 <a <m.

Note that the constraints imply that v(i,a) is the limiting distribution
of {(Xn,an)}. An optimal solution v(i,a) of the linear program, determines
(using (2)) a monotone average optimal policy

n

n(1,a) = v(1,a)( I v(i,a))" ! 0
a=1

A
-~
A
=z

]
[

n(i,m) = 1 i

Iv
-
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This optimal policy will be a nonrandom policy when the v(i,a)
is calculated by the simplex algorithm, since a nonrandom optimal
policy exists. Note that the reason we could reduce our problem to
a finite variable problem is that the limiting distribution v(1) of
our random walk satisfies (2).

If the Boundedness Assumption does not hold, then the above pro-
cedure is still useful. It may not yield a truly optimal policy,
but it will yield a suboptimal policy that maximizes ¢" over all increasing
policies m which select action m for all i > N. Such a policy, when N
is large, should be close to being optimal.

We initially thought that the Boundedness Assumption could be
Justified as follows. Consider a random walk with two actions
(51-51) - (pm—l‘qm-l)’ (3,,4,) = (p»q,), and rewards ¥(i,1) = r(i,1)
and #(1,2) = r(i,m), where the probabilities and rewards on the left
of the equalities are from the random walk with m actions. Suppose
that an average optimal policy for this two action problem is to select
(pl,ql) in location below fi* and select (ﬁz,qz) otherwise. (The ii*
could be calculated as in the previous section.) Because of the way
we defined the two action walk, it appears that n* could be used as N in
the Boundedness Assumption. We tried very hard to prove this, but we
could not.

9. Monotone Optimal Pqlicies for Finite Time Horizons_

The above analysis for random walks over an infinite time horizon
can also be done for walks over a finite time horizon. To illustrate
this, we shall present a finite time horizon analogue of Theorem 2.1.

We shall consider the random walk as in Sections 1 and 2 for N

time periods. Nonstationary rewards and policies are of interest for
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finite horizons. Accordingly, we let rn(i,a) denote the reward if the
walk is in location i at time n and action a is taken. (In Section 2

this was unr(i,a).) A policy is a sequence f = (f el fN) of mappings

1’

from the state space {0, 1, ...} to the action space {1, ..., m} with
i i i.e.

the interpretation that action fn(i) is taken, i.e (pfn(i),qfn(i)) is

selected, if the process is in state i at time n. We let

N

LI R hf(k=§_nrk(xk,ak> &

and

Vn(l) = s¥p Vn’f(i).

A policy f* is called optimal if

Vn,f*(i) = Vn(i) fior alkl 1.

The Optimality Criterion for finite time horizons asserts that a

policy f is optimal if and only if

Un(i,f“(i)) = mzx Un(i,a),

where

Un(l,a) - rn(i,a) + ? p(i,a,j)Vn_l(j)

and Vo is the zero function. We shall consider the optimal policy f
defined by

g - X
fn(l) max{a: Un(i,a) mgx lh(i,a)}.

Theorem 9.1. Suppose the following conditions hold.

(1) Py Z e R0 Wy X oo S 4 and Py + %, 3 L.

A

(2) r'n(i,l) con 5 r'n(i,m) for all i and n.
3) r'n(i,l) 2 r'n(1+1,m) for all 1 and n.
Then fn(i) is increasing in i for each n.

Proof. This can be proved as we proved Theorem 2.1.
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